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1. Introduction

. Developments in technology => Big Data => Train very powerful statistical models.

. Neural Networks try to capture F: X → Y , but we have G(Y).

. We tested regression and classification models.
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2.1 Learning from ionosondes: Predicting ionograms.

Geophysical
Parameters

. Long-term goal: teach a NN to estimate electron density profiles



2.1 Learning from ionosondes: Predicting ionograms.

Geophysical
Parameters

But only have...

Y

X

G(Y)
Will start with 
this!

. Looking for F: X → Y , but we have G(Y).



2.1 Learning from ionosondes: Predicting ionograms.

NN1

NN2. Geophysical parameters and time.

NN that predicts 
virtual heights.

NN that predicts 
critical frequency.

Training
(90%)

Validation
(10%)

Testing

. Training strategy:



2.1 Learning from ionosondes: Predicting ionograms.



2.1 Learning from ionosondes: Predicting ionograms.

. Not a significant increase in accuracy by adding two months of data but virtual heights around critical 
frequency seem to improve a little bi.



2.1 Learning from ionosondes: Predicting ionograms.

Open questions:
. How to implement the loss function to connect ionograms and electron densities?
. What is the optimal data-driven architecture?
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2.2 Spread-F forecasting: Predicting occurrence.

. Main mechanism for the Generalized 
Rayleigh Taylor (GRT) instability.

. This is how GRT manifests in Jicamarca’s JULIA radar.

Reynaldo Rojas, UTEC

. Neural Networks try to capture F: X → Y 



. Followed the approach by Zhan(2018) to bin JULIA RTIs and define Spread-F occurrence.

2.2 Spread-F forecasting: Predicting occurrence.



2.2 Spread-F forecasting: Predicting occurrence.

. h’F was included to 
try to capture the 
upwelling effect. It was 
obtained from the 
local Digisonde.

Y

X



2.2 Spread-F forecasting: Predicting occurrence.

. Assumption 1: ExB threshold for high scintillation.

. Assumption 2: ExB well correlated to h’F

=> Threshold in h’F (h’Fth) can be used to predict scintillation.

. Used the Forecasting Ionospheric Real-Time Scintillation Tool (FIRST) model as reference.

. How does FIRST work?
1. Measure local h’F at 7:30 pm.
2. Estimate h’Fth using f10.7.
3. If h’F>h’Fth then Spread F will occur at 8:30 pm.

. We will follow the same procedure for comparison.



Accuracy: 73%

Accuracy: 81%

FIRST

Our model

2.2 Spread-F forecasting: Predicting occurrence.



Open questions:
. How to understand the discrepancies between scintillation-based models and JULIA data?
. Can inputs be improved to be better predictors of occurrence?

2.2 Spread-F forecasting: Predicting occurrence.

. Analyzing NN’s sensitivity to 
inputs using SHAP values.

. Seems consistent with 
climatology.



Content:
1. Introduction.
2. Projects:

2.1  Learning from ionosondes: Predicting ionograms.
2.2 Spread-F forecasting: Predicting occurrence. 

3. Summary and conclusions.



3. Summary and conclusions.

. We now have the hardware and the mathematics to revisit well known ionospheric estimation 
problems.

. Regression NN seem to capture most of the variability of ionograms more accurately than empirical 
and numerical models.

. Classification NN show promising results in predicting Spread-F occurrence, so far outperforming 
other linear regression based methods. 

. Future work: 
Learn electron density profiles.
Physics-based proxies for inputs and try using other datasets (HF network?) 
Forecasting other Spread-F features (onset altitude, range coverage, etc).
Predict Spread-F RTIs.



Thank you.

Enrique Rojas
elr96@cornell.edu



EXTRAS



2.1 Learning from ionosondes: Predicting ionograms.

Neural Networks are F: X ---> Y , but we have G(Y).

https://docs.google.com/file/d/1qGizrl5Pf4D_q05FU4Bcd58p2IQJvKuX/preview
https://docs.google.com/file/d/1DRXtWBhv3wv9zcLuviJn74OZ3VvKxMiV/preview








Regression NN

Classification NN



{'learning_rate': 0.0020807556518588114, 'n1': 116, 'n2': 162, 'n3': 91}



. Some examples of both how 
accurate and bad the estimations 
can be.











Training
(70%)

Validation
(20%)

Testing
(10%)

2.2 Spread-F forecasting: Predicting occurrence.

. Model architecture proposed after hyper-parameter optimization:

. Training strategy:





As we can see, on June Solstice, the altitudes corresponding to the lowest 
solar flux index values are lower than on the other seasons; on September 
Equinox and December Solstice the altitudes corresponding to the highest 
solar flux index values are higher than on the other seasons. The altitudes 
also increase with solar flux for every season as expected (Chapagain et al, 
2009; Redmon et al 2013, 2017).



h’F (1930 LT): We use the time 1930 LT for two reasons: The onset time of spread F is usually around 1920 
LT and 1945 LT for equinox and December solstice (Chapagain et al, 2009) and also because we compare 
our model with the FIRST.
h’F (prev. 30 min): This is the first value of h’F for which we have available data between 1900 LT and 1930 
LT. This might indicate how fast the F layer has risen in the past 30 minutes.
F10.7: Correlates with onset altitude.
F10.7 (90 days): This is an average value of solar flux index in the last 90 days and it provides some 
information about the solar cycle.
Ap, Kp, Ap (24 h): Geomagnetic activity, depending on the local time, season and solar cycle, affects the 
occurrence of irregularities (Hysell and Burcham, 2002).
Day of the year: This is relevant because of the season-to-season variability shown in Figure 2.

DNS = sin(2πD/365), DNC = cos(2πD/365), D: Day of year (1-365)

The network was trained with the Adam optimization algorithm for 20 epochs. The loss function used was 
binary cross-entropy loss with numerical stability. The batch size chosen was 16. We did not conduct 
hyperparameter optimization.






